
SuperLUSuperLU: Sparse Direct Solvers : Sparse Direct Solvers

X. Sherry Li
xsli@lbl.gov

ACTS Collection Workshop
September 4, 2002

X. Li 2

ContentsContents

� Introduction
�Use of SuperLU in large scale applications
�Overview of the algorithms
�Sparse matrix distribution and parallel performance
�Summary

X. Li 3

What is What is SuperLUSuperLU

�Solve general sparse linear system A x = b.
� Example: A of dimension 105, only 10 ~ 100 nonzeros per row

�Algorithm: Gaussian elimination (LU factorization: A =
LU), followed by lower/upper triangular solutions.
� Store only nonzeros and perform operations only on nonzeros.

�Efficient implementation for high-performance
architectures.

�Software portable on many platforms.

X. Li 4

Software StatusSoftware Status

�Source, Users’ Guide, papers available:
www.nersc.gov/~xiaoye/SuperLU

Real/complex,
Double

Real, doubleReal/complex,
Single/double

Data type

C + MPIC + Pthread
(or pragmas)

CLanguage
(callable from F77)

DistributedSMPSerialPlatform

SuperLU_DISTSuperLU_MTSuperLU

X. Li 5

FillFill--in in Sparse GEin in Sparse GE

�Original zero entry Aij becomes nonzero in L or U.

Natural order: nonzeros = 233 Min. Degree order: nonzeros = 207

X. Li 6

SupernodeSupernode

�Exploit dense submatrices in the L & U factors

�Why are they good?
� Permit use of Level 3 BLAS
� Reduce inefficient indirect addressing (scatter/gather)
� Reduce graph algorithms time by traversing a coarser graph

X. Li 7

SuperLUSuperLU in Quantum Chemistryin Quantum Chemistry

�First solution to a long-standing unsolved
problem of scattering in a quantum system
of 3 charged particles. [Recigno, Baertschy,
Isaacs & McCurdy, Science, 24 Dec 1999]

�The simplest nontrivial example is the
ionization of a hydrogen atom by collision
with an electron.

e- + H � H+ + 2e-

�Seek the particles’ wave functions
represented by the time-independent
Schrodinger equation.

X. Li 8

Quantum Chemistry (Quantum Chemistry (con’tcon’t))

�Sparse, complex (non-Hermitian), unsymmetric
linear systems.
� Diagonal blocks have the structure of 2D finite

difference Laplacian matrices.
� Off-diagonal block is a diagonal matrix.
� Between 6 to 24 blocks, each of dimension between

200K and 350K �Total dimension as large as 8.4M.

�SuperLU_DIST as block diagonal preconditioner.
M-1A x = M-1b
M = diag(A11, A22, A33, …)

�12 to 35 iterations @ 2 to 3 minutes/iteration on
24 processors of IBM SP.

X. Li 9

SuperLUSuperLU in Accelerator Cavity Designin Accelerator Cavity Design

� Model large, complex cavities accurately for Next
Generation Accerlator.

� Maxwell equation in electromagnetic simulation.
� Finite element methods lead to large sparse

generalized eigensystem K x = λ M x.
� Seek interior eigenpairs, tightly clustered.
� Need to speed up Lanczos convergence by shift-

invert � Seek largest eigenpairs, well separated,
of the transformed system.

M (K - σ M)-1 x = µ M x
µ = 1 / (λ - σ)

� Shifted linear system is ill-conditioned and needs
to be solved accurately � Hard for iterative
solvers!

X. Li 10

Accelerator Cavity Design (Accelerator Cavity Design (con’tcon’t))

�Build exact shift-invert eigen solver with SuperLU_DIST integrated
into Lanczos code PARPACK.

�DDS model on IBM SP
� Damped, Detuned Structure, include linear and quadratic elements
� 380K with 15.8M nonzeros

� ~4.2 solves per eigenpair @ 24 seconds/solve on 8 procs.
� 1.3M with 20.1M nonzeros

� ~4.5 solves per eigenpair @ 39 seconds/solve on 32 procs.

�Solution accurate to more than 12 sig. digits in double precision.

X. Li 11

Sparse Direct SolversSparse Direct Solvers

� Sparse LU factorization: Pr A Pc
T = L U

� Choose permutations Pr and Pc for numerical stability, minimizing fill-in, and
maximizing parallelism.

� Phases for sparse direct solvers.
1. Order equations & variables to minimize fill-in.

� NP-hard, so use heuristics based on combinatorics.
2. Symbolic factorization.

� Identify supernodes, set up data structures and allocate memory for L & U.
3. Numerical factorization – usually dominates total time.

� How to pivot?
4. Triangular solutions – usually less than 5% total time.

� In SuperLU_DIST, only numeric phases are parallel so far.

X. Li 12

How and When to pivot?How and When to pivot?

�Goal of pivoting is to control element growth in L & U for stability
�Example: partial pivoting during factorization: PA = LU (GEPP)

� Used in sequential SuperLU and SuperLU_MT

�Partial pivoting implies:
� Dynamic change of fill patterns of L & U

� Must interleave symbolic & numerical factorizations
� Lots of small messages

� Slow on parallel machines with high latency

�Static pivoting used in SuperLU_DIST (GESP)
� Before factorization, scale and permute A to maximize diagonal: Pr Dr A Dc = A’
� During factorization of A’ = LU, replace tiny pivots by √ε ||A||, without changing data

structures for L & U
� If needed, use a few steps of iterative refinement after the first solution
� Symbolic and numerical factorizations decoupled

X. Li 13

Ordering for Sparse Ordering for Sparse CholeskyCholesky

�Local greedy heuristics
� Minimum degree (upper bound on fill-in)

� [Tinney/Walker `67, George/Liu `79, Liu `85, Amestoy/Davis/Duff `94, Ashcraft
`95, Duff/Reid `95, et al.]

� Minimum deficiency (actual fill-in)
� [Tinney/Walker `67, Ng/Raghavan `97, et al.]

�Global graph partitioning heuristics
� Nested dissection [George `73]
� Multilevel schemes [Hendrickson/Leland `94, Karypis/Kumar `95, et al.]
� Spectral bisection [Simon et al. `90-`95, et al.]
� Geometric and spectral bisection [Chan/Gilbert/Teng `94]

�Hybrid of the above two [Ashcraft/Liu `96, Hendrickson/Rothberg
`97]

X. Li 14

Ordering for LU Ordering for LU –– Case of Partial PivotingCase of Partial Pivoting

� Use symmetric ordering for Cholesky of ATA
� If RTR = ATA and PA = LU, then for any row permutation P,

struct(L+U) ⊆ struct(RT+R) [George/Ng `87]
� Making R sparse tends to make L & U sparse
� Strategy:

1. Find a good symmetric ordering Pc from ATA
2. Apply Pc columns of A: A’ = A Pc

T

A’TA’ = (A Pc
T)T (A Pc

T) = Pc (ATA) Pc
T

� Column minimum degree based solely on A
� Matlab; Larimore/Davis/Gilbert/Ng ‘98

X. Li 15

Ordering for LU Ordering for LU –– Case of Static PivotingCase of Static Pivoting

� Use symmetric ordering for Cholesky of AT+A
� If RTR = AT+A and A = LU, then struct(L+U) ⊆ struct(RT+R)
� Making R sparse tends to make L & U sparse
� Strategy:

1. Find a good symmetric ordering Pc from AT+A
2. Apply Pc to both rows and columns of A: A’ = Pc A Pc

T

struct(A’) = struct(PcA Pc
T) ⊆ struct(Pc(AT+A) Pc

T)

� Use symmetric ordering based solely on A
� Work in progress [Amestoy/Li/Ng `02]

X. Li 16

Ordering Interface in Ordering Interface in SuperLUSuperLU

�SuperLU library contains routines:
� Form ATA
� Form AT+A
� MMD (Multiple Minimum Degree, courtesy of Joseph Liu)
� COLAMD: www.netlib.org/linalg/colamd/

�You may use any other – just input a permutation vector to SuperLU
Example:
� (Par)Metis: www-users.cs.umn.edu/~karypis/metis/
� Chaco: www.cs.sandia.gov/~bahendr/chaco.html
� …

X. Li 17

Ordering ComparisonOrdering Comparison

9.110.735.327.726068WANG4

8.011.98.822.6120750TWOTONE

0.0020.155.54.417758MEMPLUS

68.442.7120.473.551993ECL32

34.040.244.649.838744BBMAT

N Flops (109)Flops (109) Fill (106)Fill (106)Matrix

GESP, AMD(AT+A)GEPP, COLAMD

X. Li 18

Symbolic FactorizationSymbolic Factorization

�Cholesky [George/Liu `81 book]
� Use elimination graph of L and its transitive reduction (elimination tree)
� Complexity linear in output: O(nnz(L))

�LU
� Use elimination graphs of L & U and their transitive reductions (elimination

DAGs) [Tarjan/Rose `78, Gilbert/Liu `93, Gilbert `94]
� Improved by symmetric structure pruning [Eisenstat/Liu `92]
� Improved by supernodes
� Complexity greater than nnz(L+U), but much smaller than flops(LU)

X. Li 19

Numerical FactorizationNumerical Factorization

�Sequential SuperLU
� Enhance data reuse in memory hierarchy by calling Level 3 BLAS on the

supernodes

�SuperLU_MT
� Exploit both coarse and fine grain parallelism
� Employ dynamic scheduling to minimize parallel runtime

�SuperLU_DIST
� Enhance scalability by static pivoting and 2D matrix distribution

X. Li 20

2D Block Cyclic Layout and Data Structures2D Block Cyclic Layout and Data Structures

X. Li 21

Create 2D Process Grid from MPI CommunicatorCreate 2D Process Grid from MPI Communicator

�The 2D process grid/communicator must be created from an existing
base MPI communicator (e.g., MPI_COMM_WORLD).

�SuperLU uses the newly created communicator for all the internal
communications.

�Example:
M-1A x = M-1 b
M = diag(A11, A22, A33, …)

X. Li 22

Two Ways to Create aTwo Ways to Create a SuperLUSuperLU Process GridProcess Grid

�Superlu_gridinit(MPI_Comm Bcomm, int nprow, int npcol,
gridinfo_t *grid);

� This maps the first nprow*npcol processes in the MPI communicator Bcomm
to SuperLU 2D grid.

�Superlu_gridmap(MPI_Comm Bcomm, int nprow, int npcol,
int usermap[], int ldumap, gridinfo_t *grid);

� This maps an arbitrary set of nprow*npcol processes in the MPI communicator
Bcomm to SuperLU 2D grid. The ranks of the selected MPI processes are
given in Usermap[] array. For example:

0 1 2
0
1 161514

131211

X. Li 23

Example MatricesExample Matrices

8.0G11.9M1.22M120,750.43Circuit sim.TWOTONE
68.4G42.7M.38M51,993.93Device sim.ECL32
31.2G40.2M1.77M38,744.54Fluid flowBBMAT

Flopsnnz(L+U)nnz(A) NSymmSourceMatrix

X. Li 24

ScalabilityScalability

�T3E
� 3D KxKxK cubic grids, scale N2 = K6 with P for constant work per processor
� Up to 12.5 Gflops on 128 processors

� IBM SP: K = 100, N = 1M, 49 Gflops (267 Seconds)

X. Li 25

Summary Summary –– Content of Content of SuperLUSuperLU LibraryLibrary

�LAPACK-style interface
� Simple and expert driver routine
� Computational routines
� Comprehensive testing routines and example programs

�Functionalities
� Minimum degree ordering [MMD, Liu `85] applied to ATA or AT+A
� User-controllable pivoting

� Pre-assigned row and/or column permutations
� Partial pivoting with threshold

� Solving transposed system
� Equilibration
� Condition number estimation
� Iterative refinement
� Componentwise error bounds [Skeel `79, Arioli/Demmel/Duff `89]

X. Li 26

ConclusionsConclusions

�Good implementations of sparse LU on high-performance machines
�More sensitive to latency than dense case
�Need more families of unsymmetric test matrices
�Continuing developments – being funded by DOE TOPS SciDAC

and NSF NPACI programs
� Improve triangular solution
� ILU preconditioner
� Parallel ordering and symbolic factorization
� Integrate into applications

�“Eigentemplates” book (www.netlib.org/etemplates) for survey of
other sparse direct solvers
� LLT, LDLT, LU

